
ISRAEL J O U R N A L  OF MATHEMATICS $1 (1993), 301-320 

EQUIDECOMPOSABLE AND WEAKLY NEIGHBORLY 
POLYTOPES 

BY 

MARGARET M. BAYER* 

Department of Mathematics, University of Kansas 

Lawrence, KS 66045 , USA 

bayer@math, ukans, edu 

ABSTRACT 

A polytope is equidecomposable if all its triangulations have the same 
face numbers. For an equidecomposable polytope all minimal affine de- 
pendencies have an equal number of positive and negative coefficients. A 
subclass consists of the weakly neighborly polytopes, those for which ev- 
ery set of vertices is contained in a face of at most twice the dimension as 
the set. The h-vector of every triangulation of a weakly neighborly poly- 
tope equals the h-vector of the polytope itself. Combinatorial properties 
of this class of polytopes are studied. Gale diagrams of weakly neighborly 
polytopes with few vertices are characterized in the spirit of the known 
Gale diagram characterization of Lawrence polytopes, a special class of 
weakly neighborly polytopes. 

1. I n t r o d u c t i o n  

A general question in combinatorics is how many  faces various types of complexes 

may  have. The  question has been answered completely for simplicial complexes 

and for bounda ry  complexes of simplicial polytopes.  For boundary  complexes 
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of arbitrary convex polytopes, however, the question is wide open. It is natural 

to try to apply results on simplicial complexes to triangulations of a polytope 

or its boundary to get information about the original polytope. In general the 

face numbers of a triangulation of a polytope are not functions of the polytope's 

combinatorial structure. Indeed, different triangulations may have different face 

numbers. This motivates the study of equidecomposable polytopes; these are 

the polytopes, all of whose triangulations have the same face numbers. We focus 

on the subclass of weakly neighborly polytopes. For these polytopes the face 

numbers of a triangulation can be computed from the face lattice of the polytope. 

The computation involves the toric or generalized h-vector [12]. Perhaps the 

results here relating h-vectors of triangulations and polytopes will lead to progress 

in interpreting generalized h-vectors. Background on combinatorial properties of 

polytopes can be found in [4, 6]. 

In Section 2 we define equidecomposable polytopes and give a property of their 

affine dependencies. Section 3 focuses on those triangulations whose h-vectors 

are the same as the h-vector of the polytope. Sections 4 and 5 deal with weakly 

neighborly polytopes. In Section 4 we look at general combinatorial properties 

and 3-dimensional polytopes; section 5 concentrates on weakly neighborly poly- 

topes with few vertices. 

I would like to thank Louis Billera and Bernd Sturmfels for getting me started 

on this topic, and the participants of the May 1990 workshop on polytopes in 

Passau and Walter Whiteley for helpful discussions. 

2. Equidecomposable polytopes 

A triangulation of a d-polytope P is a simplicial complex whose vertex set is the 

vertex set of P and whose underlying space is P. Write fi(C) for the number of 

/-faces of a polyhedral complex C, and call f (C) = (fo(C), fl (C) , . . . ,  fd(C)) the 

f -vec tor  of C. A polytope is equideeomposable if all its triangulations have 

the same f-vector. In this section we show that this implies a certain condition 

on the affine dependencies among the vertices of the polytope. 

A circuit of a polytope is a minimal set of affinely dependent vertices. Any 

circuit supports a unique (up to multiplication by a nonzero scalar) affine depen- 

dence. If this afflne dependence has an equal number of positive and negative 

coefficients, the circuit is called balanced. 

"Circuit" here is a matroid term. We describe what it means in terms of one 
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concrete representation of the matroid, the Gale transform. The reader may 

consult [4, 9, 14] for background on Gale transforms. A Gale t r ans fo rm of a 

polytope P is the set of columns of a matrix A whose rows form a basis for the 

affine dependencies on the vertices of P. A Gale transform D of a d-polytope 

P with n vertices is thus a set of n (not necessarily distinct) points in R "-d-1. 

To each vertex v of P there corresponds naturally a point F of D. A circuit 

of P corresponds to the complement in D of the set of points contained in a 

linear hyperplane spanned by points of D. The set of points of a circuit having 

coefficients of one sign in the affine dependence corresponds to the set of points 

on one side of the hyperplane. Thus a circuit of P is balanced if and only if 

there is an equal number of points in either open half-space bounded by the 

corresponding hyperplane of D. 

Some triangulations of a polytope can be constructed using the Gale transform 

(see Lee [7]). Let V be a Gale transform of a d-polytope P and ~ a point of 

R "-d-1 on no linear hyperplane spanned by elements of V. The maximal subsets 

S C V such that 0 is in the relative interior of the convex hull of ~c U {~} are the 

d-simplices of a triangulation. We call this the Gale triangulation induced by ~. 

A triangulation obtained in this way is called regular. Note that multiplying the 

points of the Gale transform by positive scalars does not change the sets Sc U {~} 

that capture 0. Thus we can (and often will) normalize the Gale transform to be 

a subset of S n - d - 2  [.) {0} (~__ R n-d-1. 

THEOREM 1: If a polytope is equidecomposable, then all its circuits are 

balanced. 

Proof: Suppose the d-polytope P with n vertices has an unbalanced circuit, 

X - X + U X - ,  where X + is the set of points of X having one sign in the affine 

dependence, X -  the other, and [X+I = k < m = IX-I. Consider the Gale 

transform D of P with sets X+ and X -  in the open half-spaces, H + and H - ,  

bounded by the hyperplane H. If the points of D in H capture 0 (in the relative 

interior of their convex hull), choose one of these points ~. Otherwise, since the 

points of D in H span H, there exists a point ~ of H (not in D) such that 0 

is in the relative interior of the convex hull of (D N H) U {~}. Choose points 

z -+ and ~- close to ~ in H + and H -  (here "close" means that the line segment 

conv {z --+, ~- } does not intersect any spanned hyperplane of D other than H). 

Let A + and A-  be the triangulations of P induced by z --+ and ~-. The minimal 
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cofaces that differ for the two triangulations are those for which 2 + (or 2 - )  is 

the only point in its open half-space H + (or H - ) .  That is, they are of the form 

A O {b,z -+} (or A O {c,2-}), where A is a minimal set in H such that AU {2} 

captures 0, and b E X -  (c E X-+). For each such A there are m of these cofaces 

for A+ and k for A- ,  so A + has more facets (d-faces) than A- .  Thus P is not 

equidecomposable. | 

It is not clear whether the converse to Theorem 1 holds in general. For d- 

polytopes with more than d + 3 vertices, not all triangulations of polytopes are 

regular. The balanced circuit condition enables us to argue only about regular 

triangulations. 

PROPOSITION 2: I[ all circuits of a d-polytope P are balanced, then all regular 

triangulations of P have the same f-vector. 

Proof'. Any two regular triangulations, A and A I, can be connected by a se- 

quence of triangulations, A ----- A 1 , A 2 , . . . , A j  ---- A I, where each adjacent pair 

Ai_l and Ai is related as A + and A -  are in the proof of Theorem 1. If all 

circuits are balanced then Ai_l and Ai have the same f-vector for each i, so all 

regular triangulations have the same f-vector. | 

By [7] all triangulations of a d-polytope P with at most d + 3 vertices are 

regular. Thus we get 

COROLLARY 3: I f  P is a d-polytope with at most d q- 3 vertices and all circuits 

of P are balanced, then P is equidecomposable. 

We close this section with a few examples. The regular octahedron and the tri- 

angular prism are both equidecomposable polytopes (whose triangulations have 

f-vectors (6, 13, 12, 4) and (6, 12, 10, 3), respectively). Note, however, that the 

octahedron is combinatorially equivalent to polytopes that are not equidecom- 

posable. The bipyramid over a triangle is not equidecomposable: it has one 

triangulation using two tetrahedra, one using three. 

3. Shal low subdivis ions  and h-vectors 

In this section we show how the f-vectors of certain triangulations of a polytope 

can be computed from combinatorial invariants of the original polytope (or vice 

versa). The combinatorial invariants form the h-vector of the polytope. The 
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h-vector was first defined for simplicial polytopes (its origins go back to Som- 

merville's 1927 paper [11]). More recently Stanley extended the definition to 

Eulerian posets [12]. The form of Stanley's definition comes from algebraic ge- 

ometry: the h-vector of the boundary OP of a rational polytope P is the sequence 

of intersection homology Betti numbers of the associated toric variety. 

Define polynomials h(C, x) for all polyhedral complexes C and g(S, :r) for all 

spheres S by the rules: 

1. h(0, x) = g(0, x) = 1, 

2. if dim S = d - 1  and h(S, x) = ~':~i=o ki xi, then g(S, z) = ~']~'~=o(ki-ki-1 )x i , 

where m = [d/21 and k-1 = 0, 

3. if dim C = d, then h(C, x) = ~ g(OF, x)(x - 1) T M  F, where the sum is 

over all faces F of C. 

Keeping in mind that the g-polynomial is defined only for spheres, we will 

often abbreviate g(OP, x) to g(P, x) for a polytope P. (Note, however, that we 

distinguish between h(OP, x) and h(P, x); the latter is defined for the polyhedral 

complex having a single maximal face P.) For a d-complex C with h(C, x) = 
~ d + l  kixi ' write hi = kd+l- i  and call h(C) = (h0,hl , .  hd+ l )  the h-vec tor  i = 0  " " ' 

of C. If C is a d-sphere the h-vector satisfies the Dehn-Sommerville equations: 

hi = hd+l-i for all i. The vector of coefficients of g(S, x) (in standard order) is 

the g-vector  of the sphere S. Both the h-vector and the g-vector of the boundary 

of a rational polytope are nonnegative; the only known proof of this uses the Betti 

number interpretation of the h-vector. 

If F is a simplex then g(OF, x) = 1. So for a simplicial complex C, the h-vector 

is a function of the f-vector, namely the usual function defining the h-vector of 

a simplicial complex: 

i 

j=0 

This relation is invertible, so the h-vector of a simplicial complex determines the 

f-vector. In general the h-vector is a linear function of the flag vector (but not 

vice versa) [1]. However, this fact does not lead to a natural interpretation of the 

h-vector in general. The next theorem may provide a step in that direction. 

Generalizing the notion of triangulation, we define a (po lyhed ra l )  sub-  

divis ion of a d-polytope P to be a polyhedral complex whose vertex set is that  
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of P and whose underlying space is P. If a is a face of a polyhedral subdivi- 

sion A of P,  the c a r r i e r  C(a)  of a in P is the smallest face of P containing 

a. A polyhedral subdivision A is shal low if and only if for each face a E A, 

dim C(a) <_ 2(dim a - d e g  g(a, x)). In particular a triangulation A is shallow if 

for each a E A, dim C(a) _< 2 dim a. 

Stanley [13] showed that if P is a rational polytope, then for any subdivision 

A of P, h(A) >_ h(P). We show shallowness gives equality. 

THEOREM 4: 

(1) I f  A is a shallow subdivision of a d-polytope P, then g(OP) = h(P) = 

h(A) = e(OA) 

(2) / i r a  is a subdivision of a rational d-polytope P and h(P) = h(A), then A 

is shallow. 

We first list some identities satisfied by h-vectors and e-vectors. The second 

and third are straightforward generalizations of results of [10] for triangulations. 

LEMMA 5: 

(1) If  C is a ( d - 1)-sphere, then 

(x - 1)h(C,x) =xd+lg(C, 1/x) - g (C ,x ) .  

(2) If  Q is a polyhedral ball of dimension d, then 

h(Q,x) --xd+lh(Q, 1/x) = xd+lg(OQ, 1/x) -g(OO, x). 

(3) If  A is a sha/low subdivision of a d-polytope P, then 

h(A,x)  =xd+lg(OA,1/x).  

We also need the concept of an acceptable function, defined in [12]. Let C be 

a polyhedral complex, and 7 a function that associates a polynomial 7(F, x) to 

every face F of C. The function 7 is a c c e p t a b l e  if for all faces F of C 

E 7(G'x)(x - 1)dim F-dim G = xdimF+lT(F'l/x)" 

G face of F 

The g-polynomial is the unique acceptable function 7 on the polytope such that 

7(0,x)  = 1 and for all other faces F,  degT(F,x  ) < dimF/2  [12]. 

Now we define a new polynomial for the faces of a polytope relative to a fixed 

subdivision. For any polytope P ,  any subdivision A of P,  and any face F of P,  
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"~A(F~x)  ~--- ~ g(O' ,X)(X -- 1) d i m F - d i m a  

,tEA 
C(~,)=F 

For a face F of P, write AlE for the subcomplex of A that subdivides F and 

OAlr for its boundary complex (which subdivides the boundary OF of F). 

PROPOSITION 6: If P is a polytope and A is a subdivision of P, then 74 is 

acceptable. 

Proof: Fix the polytope P and subdivision A. Let F be a face of P of dimension 

e. Consider the sum 

SA(F, z)  = 

By the definition of ~a, 

Z 7A(G,x)(x  - 1) e-dim G 

G face of F 

G face of F "EA (I) c(,)=c 

= ~ g(,,,x)(~-l) ~-~'m'. 
aEA 

C(~')C_F 

Interpreting this sum for the polyhedral complex AIF , 

SA(F~x) = Z g(a,x)(x - 1) e - d i m `  

(2) -ca l f  

= h(AlF, x). 

On the other hand, by separating the faces of AlE carried by F in expression (1), 

Sa(F,x) = Z g(a,x)(x - l)e-dima 
r£A 

C(¢)=F 

+ (z - 1) Z g(a,x)(x - 1) e - l -d im" 
~EaAIF 

= 7.,,(F,x) + (x - 1)h(OAlf,  x). 

By Lemma 5, pa, t, (X) and (2), we get 

Sa(F, x) = 7, , , ( f ,  x) + ze+'g(OAlF, 1/x) - g(OAIF, x) 
(3) 

= 7a(F ,  z)  + h(AlF, Z) -- x e + ' h ( A l F ,  1/z). 
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So, combining (2) and (3), 

7 (F, x) = xC+lh(alr ,  =  c+lS (F, 

o r  

So 74 is acceptable. 

Sa(F, x) = xe+lTa(F , l/x) 

| 

COROLLARY 7: Let A be a subdivision of a d-polytope P. Then A is shallow 

if  and only if  for every face F of P, 7~(F,x) = g(F,x). 

Proof'. As mentioned above, g is the unique acceptable function with value 1 at 0 

and degree at most dimF/2.  Thus 7a = g if and only if degTa(F, x) _< d imF/2  

for all faces F of P. This holds if and only if dimC(a) - dima + degg(a,x) < 

dim C(a)/2 for all faces a of A. | 

Proof of Theorem 4: (1) Suppose A is a shallow subdivision of P. Since each 

face of A is carried by some face of P (possibly P itself), 

h(A, x) = 

By Corollary 7 

B g(o', X)(X -- 1) d - d i m  a 

aE A 

= Z Z g(O',X)(X- l)dimF-dima(x- 1) d-dimE 
F f a c e o f P  -E,~ c(¢)ffiF 

= ~ 7 a ( F ,  x)(x -- 1) d - d i m  F 

F face of P 

h(A,x) = ~ g(F,x)(x - 1) d-ram f 

F face of P 

= h(P,x). 

Applying Lemma 5 (3) gives g(OP) = h(P) = h(A) = g(0A). 

(2) Now suppose P is rational and the triangulation A of P is not shallow. 

Then for some face G of P, degTa(G,x ) > degg(G,x). (This is equivalent to 

7,~(G, x) ~t g(G, x).) For any face F of P,  write r(F) = d - d i m  F +deg 7a(F, x). 

Let r = max{r(F) : F is a face of P with degTa(F,x ) > degg(F,x)}. The 

coefficient of x s in h(A, x) - h(P, x) is the coefficient of x" in 

(7~(F~ x) - g(f ,  x))(x - 1) d-d i ra  F 

F face of P 
,_<~(F)_<~ 
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Thus the coefficient of x 8 in h(A, x) - h(P, x) is 0 if s > r. So deg(h(A, x) - 

h(P, x)) <_ r. The coefficient of x r in h(A, x) - h(P, x) is the coefficient of x r in 

E (7a(F,  x) - g ( F , z ) ) ( z  - 11 d-dim F,  

F face of P 

which is 

E coefficient of X r - d + d i m  F in 7a(F,  x) 
F face of P 

r(F)=r 

= E 
F face of P 

r(~')=r 

E 

coefficient of x d~s -ra(F,x) in 7a(F,  z) 

leading coefficient of 7a(F,  z). 
F face of P 

r(F)=, 

If P is rational, each term in the last sum is positive, so h(A, z) - h(P, x) # O. 

So the toric h-vector of A does not equal the toric h-vector of P .  | 

Note that this implies that if P is a rational, equidecomposable polytope, then 

P has a shallow triangulation if and only if all subdivisions of P are shallow. 

Also, the proof of (1) shows that if the faces of A up to dimension k satisfy the 

shallowness condition, then h(A) will agree with h(P) up to index [k/2J + 1. 

For a simplicial complex A write h(A \ 0A, z) = h(A, z) - (z - 1)h(0A, x) and 

f i (A \ 0A) = f i (A) - / ~ ( 0 A ) .  A result of [10] shows that for A a shallow trian- 

gulation of a polytope P, g(OA, z) = h(A \ 0A, z). Combining with Theorem 4 

this gives 

COROLLARY 8: I l L  Is a s h a l l o w  triangulation of a d-polytope P, then 

( ) (1) g~(P) = ~ ( _ l / + l - , - i  e + 1 - j i B-1  (A \ OzX) fo~ 0 < i < a/2, 
j= [d121 + 

(2) gLa/ZJ (P) = frd121 (A \ 0A), . l ( : )  
(3) S ~ ( ~ \ o a ) =  ~ a ~ - i  i=[d/21+l - j gd+l- i (P)  for 0 < j _< d, 

(4) frd/21+l(A "- 0A) = [d/2Jg[d/2j (P) + gia/2J-i(P). 
It would be valuable to extend this to an interpretation of the g-vector of a 

polytope P in terms of face numbers of an arbitrary triangulation. 
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4. W e a k l y  n e i g h b o r l y  p o l y t o p e s  

A polytope P is w e a k l y  n e i g h b o r l y  if and only if every set of k -[- 1 vertices 

is contained in a face of dimension at most 2k, for all k. Among the weakly 

neighborly polytopes are the even-dimensional neighborly polytopes, those 2m- 

dimensional polytopes for which every set of at most m vertices is the vertex set 

of a face. 

PROPOSITION 9: A polytope is weakly neighborly if and only if all its triangu- 

lations are shallow. 

Proof." The forward implication is clear. The reverse implication follows from 

the observation that  every affinely independent set of vertices of P is the vertex 

set of a face of some triangulation of P.  | 

COROLLARY 10: Every weakly neighborly polytope is equidecomposable. 

Note that  by definition, weak neighborliness, unlike equidecomposability, is a 

combinatorial property. 

The Hirsch conjecture states that  for any d-polytope P with n facets, the 

edge-distance between any two vertices is at most n - d (see [5]). 

PROPOSITION 11: Weakly neighborly polytopes satisfy the Hirsch conjecture. 

Proof." We observe, more generally, that  for two vertices x and y on a 2-face of 

any d-polytope with n facets, the distance, d(x, y), between x and y is at most 

n - d. To see this, suppose x and y are on a 2-face F and F is an m-gon. Then 

clearly the distance between x and y is at most m/2. We estimate the number of 

facets n of the polytope P.  F is the intersection of d - 2 facets of P.  Each edge 

on F is the intersection of these d - 2 facets with an additional distinct facet. 

Thus P has at least d - 2 + m >_ d + tin/2] facets. So d(x, y) <_ [m/2] < n - d, 

as desired. II 

Although we are most interested in using shallow triangulations to study non- 

simplicial polytopes, we first look briefly at the simplicial case. A simplicial 

d-polytope is k-stacked if and only if P has a triangulation in which every 

(d - k - 1)-face is a face of P (see [10]). 

PROPOSITION 12: Let P be a simplicial d-polytope. Then P has a shallow 

triangulation ff and only ff P is [d/2J-stacked. 
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Proof: =~ Let A be a shallow triangulation of the simplicial d-polytope P.  If 

direct < d/2, then the carrier of a is some proper face F of P.  This face F is a 

simplex, because P is simplicial, so every subset of its vertices determines a face 

of P. Thus a is a face of P.  So every face of A of dimension less than d/2 is a 

face of P,  so P is [d/2J-stacked. 

~= Suppose the simplicial d-polytope P is [d/2j-stacked. Then P has a trian- 

gulation A for which every face of dimension less than d/2 is a face of P.  The 

triangulation A is clearly shallow. | 

PROPOSITION 13: A simplicial polytope is weakly neighborly if and only if it is 

a simplex or an even-dimensional neighborly polytope. 

Proof: Simplices and even-dimensional neighborly polytopes are clearly weakly 

neighborly. Now suppose P is a simplicial weakly neighborly d-polytope. Then 

every set of m = [(d + 1)/2J vertices of P is contained in a facet. The facets are 

all simplices, so any set of m vertices of P is the vertex set of an (m - 1)-face of 

P. Thus P is m-neighborly. If d is even, this says that P is neighborly; if d is 

odd, it implies P is a simplex. II 

Among nonsimplicial polytopes there are two classes known to be weakly neigh- 

borly. The first of these is the class of Lawrence polytopes [2]. A Lawrence 

polytope is a polytope with an even number of vertices and a centrally sym- 

metric (normalized) Gale transform. Equivalently, it is a polytope with vertex 

set { u l , . . . ,  un, v l , . . . ,  vn} such that the complement of each pair {ui, vi} is the 

vertex set of a face. The flag vector of a Lawrence polytope depends only on 

the underlying matroid. It is open whether this is true for all weakly neighborly 

polytopes. We shall return to this question in the next section. 

Another example of weakly neighborly polytopes is given by the Cartesian 

product of two simplices (of any dimension). Billera, Cushman and Sanders 

[3] showed that these polytopes are equidecomposable. They described certain 

regular triangulations of the product T "  x T n of an n-simplex and an m-simplex, 

and computed the h-vector of such a triangulation. This gives the g-vector of the 

product of two simplices: gk(T"* x T " )  = (~')(~) for 0 < k < (m + n)/2. 

Which operations on polytopes preserve weak neighborliness? 

PROPOSITION 14: Let Q be a weakly neighborly polytope. Then 

(1) The pyramid PQ over Q is weak]y neighborly. 
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(2) Any subpolytope (that is, the convex hull of any subset of the vertices 

of Q) is weakly neighborly. In particular, any face of Q is weakly neighborly. 

Proof: (1) Let S be a set of k + 1 vertices of PQ. If S is contained in the vertex 

set of Q, then S is contained in a face of Q of dimension at most 2k. This face 

is also a face of PQ. Now suppose S contains the pyramiding vertex v of PQ. 

Then S \ { v }  is a set of k vertices of Q, and hence is contained in a face F of Q 

of dimension at most 2k - 2. Then S is contained in the pyramid over F,  a face 

of PQ of dimension at most 2k - 1. 

(2) Let P be a subpolytope of Q, and let S be a set of k + 1 vertices of P. Then 

S is contained in a face F of Q of dimension at most 2k. Now let G = F fl P; G 

is a face of P containing S and of dimension at most 2k. | 

This section closes with the characterization of weakly neighborly 3-polytopes. 

THEOREM 15: The only weakly neighborly 3-polytopes are the prism over a 

triangle and the pyramids over 2-polytopes. 

Proo~ Suppose P is a weakly neighborly 3-polytope, and hence is equidecom- 

posable. Then every set of five vertices, being dependent, contains a circuit of 

size four. The affine span of these four vertices is 2-dimensional; its intersection 

with P is a quadrilateral. The endpoints of a diagonal of this quadrilateral must 

be in a 2-face, so the four vertices are in a 2-face. Thus, if P is a weakly neigh- 

borly 3-polytope, then every five vertices contain four that are contained in a 

face of P.  

Recall that the only simplicial weakly neighborly 3-polytope is a simplex (which 

is a pyramid over a triangle). Suppose now that P has a face with k > 6 

vertices, ul ,  u 2 , . . . , u k  in cyclic order. If P has only one other vertex, then P 

is a pyramid over a k-gon. If P has at least two other vertices, vl and v2, then 

{Ul, us, us, vl, v2} does not contain four vertices in a 2-face. This contradicts the 

weak neighborliness of P.  

So let k be the maximum number of vertices of a face of P,  k = 4 or k = 5. Let 

ul ,u2 , . . .  ,uk be the vertices of the face F1 of P.  If P has only one other vertex, 

then P is a pyramid over a k-gon. Otherwise, let vl and v2 be two other vertices 

of P.  Then {ul,u2,u3,vl,v2} contains four vertices in a 2-face. This 2-face F2 

cannot contain both ul and us, so without loss of generality say the four vertices 

are ul,  u2, vl, and v2. Let wl (respectively, w2) be the vertex of F2 other than 

u2 (respectively, other than Ul) adjacent to u~ (respectively, u2). See Figure 1. 
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U k Wl  

U3 W2 

Figure 1: Two 2-faces of a weakly neighborly polytope 

Now suppose P has another vertex ws, not in F1 or F2. Consider the set 

{ul, u2, uk, w2, ws }. Neither of the pairs {u2, uk } and {ul, w2 } can be in a 2-face 

containing four of these. So there is no set of four of the vertices contained in a 

2-face. 

So all vertices of P are in F1 U F2. Since {u2,us,uk,wl,w2} contains four 

vertices in a 2-face, and neither of the pairs {u2, uk} and {u2, wl } can be in such 

a 2-face, {us, uk, wl, w2} must be in a 2-face. Such a 2-face cannot contain both 

us and us, so k = 4. Then {u3,u4,wl,w2} is the set of vertices of a 2-face. 

Thus P has vertex set {ul,u2,u3,u4,wl,w2} and three of the 2-faces of P are 

{ul,u2,us,u4}, {ul,u2,wl,w2}, and {us, u4,wl,w2}. Clearly P is a prism over 

a triangle. II 

5. Weakly neighborly po ly topes  with few vertices 

5.1 DESCRIPTION OF THE GALE TRANSFORMS. In this section we use Gale 

transforms to study weakly neighborly d-polytopes with at most d -4- 3 vertices. 

First consider the case of d-polytopes with d + 2 vertices. The Gale transform 

consists of d + 2 points distributed between +1 and -1. A Gale triangulation is 

induced by adding one more point. If the new point has the sign of the larger of 

the two sets, then the induced triangulation is shallow. If the new point has the 

sign of a strictly smaller set, then the induced triangulation is not shallow. Thus 

all polytopes with d + 2 vertices have shallow triangulations. All triangulations 

of the polytope are shallow if and only if the two sets of its Gale transform are 

the same size; in this case the Gale transform is centrally symmetric. Thus we 

conclude: 
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PROPOSITION 16: Let P be a d-polytope with d + 2 vertices. Then the following 

are equivalent. 

(1) P is equidecomposable. 

(2) P is weakly neighborly. 

(3) P is an r-fold pyramid over a Lawrence polytope, for some r >_ O. 

(4) P is an r-fold pyramid over an even-dimensional cyclic polytope, for some 

r > O .  

We can also characterize the Gale transforms of weakly neighborly d-polytopes 

with d + 3 vertices. First we consider equidecomposable polytopes. Recall that 

the condition that all circuits are balanced is equivalent, in the Gale transform, 

to every spanned linear hypcrplane bounds two open half-spaces with the same 

number of points (counting multiplicity). 

THEOREM 17: Let P be a d-polytope with d + 3 vertices. Then P is equide- 

composable i f  and only i f  P is an r-fold pyramid (r ~_ O) over a polytope whose 

GaJe transform satisfies 

(1) there exists a nonnegative integer c such that each diameter of  the GMe 

transform has exactly c more points on one end than on the other; and 

(2) i f  c ~ O, then the number of diameters is odd, and in the cyclic order 

the diameter ends alternate between having more points and having fewer 

points. 

Proof'. =~ Suppose P is an equidecomposable d-polytope with d + 3 vertices. 

Since a pyramid is equidecomposable if and only if its base is, we may assume P 

is not a pyramid. The normalized Gale transform of P is a circle with numbers 

of points at the ends of the k diameters, a 1+, a 2+,.. . , a +, a~ , a 2 ,. .. a k. P being 

equidecomposable means that for every j ,  1 _< j < k, 

j - 1  k j - I  k 

(4) E a  + + ~ a~----~-~a~" + ~ a t .  
i=  1 i = j +  1 i= 1 i = j +  1 

For 1 _< j _< k - 1, subtract Equation 4 for j d- 1 from Equation 4 for j .  Then 

for 1 < j < k - l ,  aj+ 1 + - a 7 = aj+ 1 -  - a~, or a++l - aj-+l - - a ~ - - a  +. Letting 

c = l a  + - a~-I, we get condition 1, and we see that if c ~ 0, the excess must 

alternate between positive and negative. Now observe that Equation 4 for j = 1 
k + says ~'~i=2(ai - a~') = O. If k is even, the sum on the left can be 0 only if c -- 0. 
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¢= Now suppose conditions 1 and 2 are satisfied. Thus we may assume for 

every i, a T = a + + ( -1) ic .  It is easy to check that Equation 4 is satisfied for 

every j ,  so P is equidecomposable. II 

For an equidecomposable polytope P,  call the constant c given by Theorem 17 

the s ign  d i f f e rence  of P. 

THEOREM 18: Let P be a d-polytope with d + 3 vertices. Then P is weakly 

neighborly if  and only if  P is equidecomposable and the sign difference of P is 0 

or 1. 

Proof: The theorem follows easily from the case where P is not a pyramid. So 

suppose P is a d-polytope with d + 3 vertices that is not a pyramid. Consider 

the Gale transform D of P as described in the proof of Theorem 17. 

::*- Suppose P is weakly neighborly with sign difference c. Suppose without 

loss of generality that  a + - a~- = c, so a~- = a + + ( - 1 ) J c  for all j .  Let S be the 

set of }-~ik=l a~- points o11 the half-open semicircle of D. Then S is contained in 

no proper face of P.  Now 

k 
2[Sl- 2 = 2 ~ a2- - 2 

i----1 

k k 

= E a ~ -  + E ( a ,  - ( - 1 ) i c ) - c  - 2 
i=1 i=1 

= d + 3 - c - 2 = d + l - c  

Since P is weakly  neighbor ly ,  2ISI - 2 > d, so c < 1. 

¢= Assume P is an equidecomposable nonpyramid with sign difference c = 0 

or c = 1. Note that  P has (possibly) two kinds of facets: simplices (whose cofacets 

are two-dimensional in the Gale transform), and equidecomposable 

( d -  1)-polytopes with d + 1 vertices (whose cofacets are located on one di- 

agonal). Both types of facet are weakly neighborly polytopes. Suppose S is a 

set of vertices of P. If S is contained in a facet, then because the facet is weakly 

neighborly, S is contained in a face of the facet of at most twice its dimension. 

But this face is also a face of P,  so S is contained in a face of P of at most twice 

its d imension.  If S is not  contained in a facet,  then there exis ts  j such that 

contains  + + + - { a l , a 2 ,  ,a~-}. So . . .  , a j  , a j + l , . . .  
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2 ] S I - 2  
j k 

> 2 Z a + + 2  Z a ~ - - 2  
i=1 i = j + l  

J J J 
= Z a+ + Z (a+ + (-1)ic) - Z ( - 1 ) i c  

i=1 i=1 i=1 

k k k 

+ Z aT + Z ( a i - - ( - 1 ) i c ) +  Z ( - 1 ) i c - 2  
i=j+l  i=j+l  i=j+l  

k k k 

: Z a  + + Za. ' [  + Z ( - 1 ) i c - ( - 1 ) J c - 2  
i=1 i=1 i=2 

= d + 3 - ( - 1 ) J c - 2 = d + l - ( - 1 ) J c  

> d + l - c > d .  

So S is contained in a face of dimension at most twice the dimension of S. Thus 

P is weakly neighborly. | 

5 . 2  SHELLINGS AND h-VECTORS. The h-vectors of weakly neighborly d-poly- 

topes with d + 2 vertices are the vectors of the form (1, 2, 3 , . . . ,  k, k , . . . ,  k, k - 

1 , . . . ,3 ,2 ,1 )  (here k = 1 / 2 ( d -  r + 2) if P is an r-fold pyramid). This is the 

entire set of possible h-vectors for d-polytopes with d + 2 vertices. We shall see 

that this fails for d-polytopes with d + 3 vertices: not all h-vectors of d-polytopes 

with d + 3 vertices are h-vectors of weakly neighborly polytopes. 

It is well known that the h-vector of a shellable simplicial complex can be 

calculated from an explicit shelling. Lee [8] used this to compute the h-vector of 

a simplicial polytope from its Gale diagram. We apply this technique to weakly 

neighborly polytopes. 

A shelling of a pure simplicial d-complex A is an ordering F1,F2,... ,F,n of 

its facets so that for each j, 2 < j < m, Fj f-l(Oi<jFi) is a pure (d-1)-dimensional 

subcomplex of Fj. If F1, F2, . . . ,  F,n is a shelling of A, then hk(A) is the number 

of j such that k is the cardinality of the minimal face of Fj not contained in any 

previous Fi [9]. 

Suppose a d-polytope P with d + 3 vertices has a (normalized) Gale transform 

D. We say a ray r from 0 is in general  posi t ion with respect to D if - r  contains 

no point of D and r does not meet the intersection of any two diagonals of D (a 

diagonal of D is a line segment connecting two points of D). The pairs {~,y} 
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of points of D such that the open ray r \{0} intersects the relative interior of 

cony {~, ~} are the cofaces of the maximal simplices of a triangulation A of P. 

(This is the Gale triangulation induced by a point 2 on - r  \{0}.)  

We describe a shelling order for A (this follows [7], where a certain degree 

of afflne independence is assumed). First choose an ordering of the points at 

each point location. Now order the diagonals in order of decreasing distance 

from 0 along r. Let ~ /  and X~- be the points at the two ends of the ith 

diagonal. Order the pairs in ~ × X ,  consistently with the orderings of X-~/. 

This gives an ordering of all pairs {Y, ~} whose convex hulls intersect r \{0}.  It 

is straightforward to check that it gives a shelling of A. 

Say that a point ~ is weakly separa ted  from 0 by {~, ~} if either ~ is in the 

open half-space bounded by the line aff{~,~} not containing 0, or ~ is in the 

same set ~ O X ,  as ~ and ~ and occurs before Y or ~ in the chosen orderings 

of X--'~/. If F is a facet of A with coface {Y, ~} then the minimal face of F not 

contained in a previous facet of the shelling is spanned by the vertices v such 

that ~ is weakly separated from 0 by {y,~}. Thus hi(A) is the number of pairs 

{~,~} whose convex hull intersects r \{0} and which weakly separate exactly i 

points from 0. Applying Theorem 4 gives the following. 

PROPOSITION 19: Let P be a d-polytope with d + 3 vertices; let D be a Gale 

transform of P; let r be a ray from 0 in general position with respect to D; and 

Iet A be the triangulation of P induced by r. If  A is shallow, then gi(P) is the 

number of pairs {~,~} whose convex hull intersects r \{0} and which weakly 

separate exactly i points from O. 

For a weakly neighborly polytope this implies that no diagonal of a Gale trans- 

form separates more than d/2 points from 0. 

For Lawrence polytopes the flag vector (and hence, f-vector and h-vector) 

depends only on the underlying matroid (the affine matroid on the vertices), 

not on the oriented matroid. The next theorem gives a partial extension to 

equidecomposable and weakly neighborly polytopes. 

THEOREM 20: If  P and Q are equidecomposable polytopes with at most d + 3 

vertices having the same matroid, then all triangulations of P and Q have the 

same f-vector. If  P and Q are weakly neighborly polytopes with at most d + 3 

vertices having the same matroid, then h( OP ) = h( OQ, ). 

Proof: For equidecomposable polytopes with at most d + 2 vertices, the ma- 
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troid determines the combinatorial type of the polytope. Now suppose P is an 

equidecomposable d-polytope with d + 3 vertices, and let Dp be a normalized 

Gale transform for P. Let Q be a polytope with normalized Gale transform D o 

differing from Dp in that two diameters are exchanged (and flipped to preserve 

equivariance). 

Consider a ray r from the origin in general position, and the induced trian- 

gulations Ap and AQ of P and Q, respectively. A straightforward calculation 

shows that the diagonals crossed by r in the two Gale transforms make the same 

contribution to the h-vectors of Ap and AQ. 

Since P and Q are equidecomposable, all triangulations of the two polytopes 

have the same h-vector. The h-vector of a simplicial complex determines its 

f-vector, so the first statement of the theorem is proved. Finally, for weakly 

neighborly polytopes, the h-vector of a triangulation determines the h-vector of 

the boundary of the polytope, so the second statement holds. | 

CONJECTURE 21: The flag vector and h-vector of (the boundary of) a weakly 

neighborly d-polytope depend only on the underlying matroid. 

By examining Gale transforms of 6-polytopes with nine vertices it can be shown 

that there is no equidecomposable polytope with h-vector (1, 3, 4, 5, 4, 3, 1). Thus 

not all h-vectors of d-polytopes with d + 3 vertices can be realized by equidecom- 

posable or weakly neighborly polytopes. 

6. Pur ther  problems 

Analogues of Theorems 17 and 18 hold only for "generic" d-polytopes with d+  4 

vertices. Here we call a polytope generic if the distinct diameters of its Gale 

transform are in general position, while any number of points may occur on each 

diameter. An equidecomposable generic d-polytope with d + 4 vertices has a Gale 

transform satisfying 

(1) there exists a nonnegative integer c such that each diameter of the Gale 

transform has exactly c more points at one end than at the other; and 

(2) if c # 0, then the number of diameters is even. 

Furthermore, a generic equidecomposable d-polytope with d + 4 vertices is 

weakly neighborly if and only if this sign difference c is 0 or 1. 

Finally we mention some open questions for weakly neighborly polytopes of 

any dimension and any number ~f vertices. 
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1. Are all weakly neighborly polytopes rigid? Here a polytope is called rigid 

if its face lattice uniquely determines its oriented matroid. 

2. Can a proper subdivision (with no new vertices) of a polytope be weakly 

neighborly.'? 

3. Does every even-dimensional weakly neighborly polytope have f-vector 

minimal among polytopes with the same h-vector? 

The interpretation of the h-vector for nonsimplicial polytopes is important for 

further progress on facial enumeration questions. We hope that the study of 

weakly neighborly polytopes will suggest ideas in that direction. 
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